MODEL VH10, 20 VIBRATION LEVEL SENSOR #### **Features** - For very low bulk density 0.02g/cm³ to 0.20g/cm³ - Uses solid state piezoelectric vibration principle for detecting material level - Provides relay output when material contacts probe and dampens vibration #### **General description** The VH series are designed for using very low density powder or material such as fibers, perlite, diatomaceous earth, toner, carbon black, white carbon, expanded polystyrene, etc. VH10 is a compact version used for high and low level detection. VH20 is suitable for high alarm in large silos. Pipe Extension up to 2500mm for N model and 4000mm for F model are available ## **Operational Description** The vibration reed is welded on two sustention pipes in order to stabilize the vibration mode. Two piezo-electric elements are mounted on the vibration reed. One provides vibration and the other detects damping of vibration. When the vibration reed is covered by material, the piezo-electric element detects damping of vibration. The electronic circuit detects the damping and converts into relay output. #### **Ordering Information** | | _ | | | | | | | |------|----------------|---|----------|-------------------------------|--|--|--| | VH10 | Standard | | | | | | | | VH20 | Pipe Extension | | | | | | | | | NH | | | | | | | | | FH | | | | | | | | | 0 Fla | | Fla | t-face flange | | | | | | | | Rai | Raised-face flange | | | | | | | | Plu | g mounting | | | | | | | | J | JIS flange | | | | | | | | Α | ANSI flange | | | | | | | | D | DIN flange | | | | | | | | G | G plug | | | | | | | | R | R plug | | | | | | | | T | NPT plug | | | | | | | | | S 304 stainless steel | | | | | | | | | S6 316 stainless steel | | | | | | | | | A 90-132/180-264V AC, 50/60Hz | | | | | | | | | G G3/4 | | | | | | | | | T NPT3/4 socket | | | | | | <u> </u> | V | + | → → | | | | | VH10 | NH | 4 | R | S A G = VH10NH-4RSAG | | | | - * The mounting size should be specified when you order. - * The length of probe should be specified in mm if required. ## **Specifications** | Model | | VH10NH | VH10FH | VH20NH | VH20FH | | | |--------------------------------|---------------|--|---|----------------|---|--|--| | Description | | Stan | dard | Extension tube | | | | | Drawing | | φ114
(76)
(82)
(82)
(82)
(83)
(84)
(84)
(85)
(84)
(84)
(85)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84)
(84) | φ114
(76)
(4-φ15)
Holes
(4-φ15)
(4-φ15)
(4-φ15)
(4-φ15)
(4-φ15)
(4-φ15)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(4-φ13)
(| 8×t2 | φ11-
4-φ15 Holes φ27.2 4-φ15 8×12 8×12 | | | | Mounting size | | R1 | JIS5K50A | R1-1/4 | J IS 5K50A | | | | Supply Power | | 90 to 132V AC, 180 to 264V AC 50/60Hz | | | | | | | Power Consumption | | Approx. 5VA Max. | | | | | | | Relay Output | | 1 SPDT, 240V 3A AC, 30V 3A DC (Resistive) | | | | | | | | | C-NO: Normally Open contact | | | | | | | | | C-NC: Normally Closed contact | | | | | | | Detection | | Approx. 1 second for covered | | | | | | | Time Delay | | Approx. 5 seconds for free | | | | | | | Operating Housing | | 0 to 60°C | | | | | | | Temperature Vibration rod | | −20 to 80°C | | | | | | | Maximum Pressure | | 1 MPa | | | | | | | Maximum Humidity | | 95% RH | | | | | | | Sensitivity | | Apparent density of 0.02g/cm ³ Min. | | | | | | | Vibration Frequency | | Approx. 550 Hz | | | | | | | Material | Housing | ADC12 | | | | | | | | Vibration rod | | 304 | | | | | | | Extension | | | 304 | SS* | | | | Cable Entry | | G3/4 | | | | | | | Protection | Housing | IP65 | | | | | | | | Vibration rod | IP68 | | | | | | | Indication | | Green LED for Power status | | | | | | | *Other meterials are available | | Red LED for Relay status | | | | | | ^{*}Other materials are available. ## Wiring # Connections and Specification Contact capacity 240V 3A AC (Resistive load) 30V 3A DC (Resistive load) Supply power 90∼132 V AC 50/60Hz 180∼264 V AC 50/60Hz Power consumption 5VA # Example of powder with low apparent density | • | | |--|------------------| | Medium | Apparent density | | Perlite | 0.02 to 0.5 | | White carbon | 0.03 to 0.05 | | Ultrafine particle of anhydrous silica | 0.04 to 0.06 | | Fluorite | 0.08 to 0.12 | | Micro titanium dioxide | 0.08 | | Silicon nitride whisker | 0.1 | | Diatomaceous earth | 0.1 to 0.15 |